
SDRAM (3.0.2)

SDRAM Library
The XMOS SDRAM module is designed for 16 bit read and write access of arbitrary length at up to 62.5MHz
clock rates. It uses an optimized pinout with address and data lines overlaid along with other pinout
optimizations to implement 16 bit read/write with up to 13 address lines with a total of just 20 pins.

Features

The SDRAM component has the following features:

• Configurability of:

– SDRAM geometry
– clock rate
– refresh properties

• Supports:

– read
– write
– one or more clients
– asynchronous command decoupling with a command queue of length 8 for each client
– refresh handled by the SDRAM component itself

• Requires a single core for the server

Components

• SDRAM server
• Memory address allocator

Resource Usage

This following table shows typical resource usage in some different configurations. Exact resource usage
will depend on the particular use of the library by the application.

Configuration Pins Ports Clocks Ram Logical
cores

SDRAM server 20 4 (1-bit), 1 (16-bit) 1 ~4.0K 1

Memory address allocator 0 0 0 ~0.2K 0

Software version and dependencies

This document pertains to version 3.0.2 of this library. It is known to work on version 14.1.1 of the
xTIMEcomposer tools suite, it may work on other versions.

The library does not have any dependencies (i.e. it does not rely on any other libraries).

Related application notes

The following application notes use this library:

• AN00170 - Using the SDRAM library

Copyright 2016 XMOS Ltd. 1 www.xmos.com
XM006978



SDRAM (3.0.2)

1 Hardware characteristics

The signals from the xCORE required to drive an SDRAM are:

Clock Clock line, the master clock the SDRAM uses for sampling all the other signals.

DQ_AH The 16-bit data bus and address bus multiplexed, see below.

WE Write enable(Inverted).

RAS The row address strobe(Inverted).

CAS The coloumn address strobe(Inverted).

Table 1: SDRAM data and signal wires

Because of the multiplexing attention must paid to the physical wiring of the SDRAM to the xCORE.

A typical SDRAM requires the following signals:

• CLK - Clock
• CKE - Clock Enable
• CS - Chip Select
• RAS - Row Address Strobe
• CAS - Col Address Strobe
• WE - Write Enable
• DQ[15:0] - Data
• DQM - Data Input/Output Mask
• A[11:0] - Address
• BA[1:0] - Bank Address

The exact count of Address lines and Bank Address line may vary. This library is designed to work with a
16 bit data bus.

The dq_ah bus is made up of 16 lines. The DQ bus is mapped directly to dq_ah. The address bus is
mapped in order to the lower bits of dq_ah. Finally, the bank address bus is mapped to the higher bits of
dq_ah.

Where the Address bus is 12 bits wide and the bank address is 2 bits wide the following setup is in place:

dq_ah[15:0] = DQ[15:0]
dq_ah[11:0] = A[11:0]
dq_ah[15:14] = BA[1:0]

The number of address bits plus the number of bank address bits must not exceed 16.

The DQM signal(s) is connected to the NOR of WE and CAS. An example of a suitable part is the TI
SN74LVC1G02. In the case that the DQM is seperated into high and low components then the output
from the NOR is connected to both high and low DQM.

This library assumes that CS is pulled low, i.e. the SDRAM is always selected. If control of the CS is needed
then it must be done from the client application level. This means that for the duration of the use of the
SDRAM, CS must be asserted and when sdram_server is shutdown the CS can be deasserted.

Copyright 2016 XMOS Ltd. 2 www.xmos.com
XM006978



SDRAM (3.0.2)

2 SDRAM API

All SDRAM functions can be accessed via the sdram.h header:

#include <sdram.h>

You also have to add lib_sdram to the USED_MODULES field of your application Makefile.

SDRAM server and client are instantiated as parallel tasks that run in a par statement. The client (appli-
cation on most cases) can connect to the server via a streaming channel.

For example, the following code instantiates an SDRAM server and connects an application to it:

out buffered port:32 sdram_dq_ah = XS1_PORT_16A;
out buffered port:32 sdram_cas = XS1_PORT_1B;
out buffered port:32 sdram_ras = XS1_PORT_1G;
out buffered port:8 sdram_we = XS1_PORT_1C;
out port sdram_clk = XS1_PORT_1F;
clock sdram_cb = XS1_CLKBLK_1;

int main() {
streaming chan c_sdram[1];
par {

sdram_server(c_sdram, 1,
sdram_dq_ah,
sdram_cas,
sdram_ras,
sdram_we,
sdram_clk,
sdram_cb,
2, 128, 16, 8,12, 2, 64, 4096, 4);

application(c_sdram[0]);
}
return 0;

}

Note: The client and SDRAM server must be on the same tile as the line buffers are transferred by moving
pointers from one task to another.

The SDRAM library uses movable pointers to pass buffers between the client and the server. This means
that if the client passes a buffer to the SDRAM server, the client cannot access that buffer while the
server is processing the command. To handle this the client sends commands using sdram_read and
sdram_write, both of which take a movable pointer as an argument. To return the pointer to the client
the client must call sdram_complete which will take back ownership of the pointer when the SDRAM
server has finished processing the command.

sdram_complete can be selected to allow the client to event on data becoming ready or completing a
write.

2.1 Client/Server model

The SDRAM server must be instantiated at the same level as its clients. For example:

chan c_sdram[1];
par {

sdram_server(c_sdram, 1, ... );
client_of_the_sdram_server(c_sdram[0]);

}

Copyright 2016 XMOS Ltd. 3 www.xmos.com
XM006978



SDRAM (3.0.2)

would be the mimimum required to correctly setup the SDRAM server and connect it to a client. An
example of a multi-client system would be:

chan c_sdram[4];
par {

sdram_server(c_sdram, 4, ... );
client_of_the_sdram_server_0(c_sdram[0]);
client_of_the_sdram_server_1(c_sdram[1]);
client_of_the_sdram_server_2(c_sdram[2]);
client_of_the_sdram_server_3(c_sdram[3]);

}

2.2 Command buffering

The SDRAM server implements a 8 slot command buffer per client. This means that the client can queue
up to 8 commands to the SDRAM server through calls to sdram_read or sdram_write. A successful call
to sdram_read or sdram_write will return 0 and issue the command to the command buffer. When the
command buffer is full, a call to sdram_read or sdram_write will return 1 and not issue the command.
Commands are completed (i.e. a slot is freed) when sdram_complete returns. Commands are processed
as in a first in first out ordering.

2.3 Initialization

Each client of the SDRAM server must declare the structure s_sdram_state only once and call
sdram_init_state. This does all the required setup for the command buffering. From here on the
client can call sdram_read and sdram_write to access the physical memory. For example:

s_sdram_state sdram_state;
sdram_init_state(c_server, sdram_state);

where c_server is the channel to the sdram_server.

2.4 Safety through the use of movable pointers

The API makes use of movable pointers to aid correct multi-threaded memory handling. sdram_read
and sdram_write pass ownership of the memory from the client to the server. The client is no longer
able to access the memory. The memory ownership is returned to the client on a call return from
sdram_complete. For example:

unsigned buffer[N];
unsigned * movable buffer_pointer = buffer;

//buffer_pointer is fully accessable

sdram_read (c_server, sdram_state, bank, row, col, words, move(buffer_pointer));

//during this region the buffer_pointer is null and cannot be read from or written to

sdram_complete(c_server, sdram_state, buffer_pointer);

//now buffer_pointer is accessable again

During the scope of the movable pointer variable the pointer can point at any memory location, however,
at the end of the scope the pointer must point at its original instantiation.

For example the following is acceptable:

Copyright 2016 XMOS Ltd. 4 www.xmos.com
XM006978



SDRAM (3.0.2)

{
unsigned buffer_0[N];
unsigned buffer_1[N];
unsigned * movable buffer_pointer_0 = buffer_0;
unsigned * movable buffer_pointer_1 = buffer_1;

sdram_read (c_server, sdram_state, bank, row, col, words, move(buffer_pointer_0));
sdram_write (c_server, sdram_state, bank, row, col, words, move(buffer_pointer_1));

//both buffer_pointer_0 and buffer_pointer_1 are null here

sdram_complete(c_server, sdram_state, buffer_pointer_0);
sdram_complete(c_server, sdram_state, buffer_pointer_1);

}

but the following is not as the movable pointers are no longer point at the same memory when leaving
scope as they were when they were instantiated:

{
unsigned buffer_0[N];
unsigned buffer_1[N];
unsigned * movable buffer_pointer_0 = buffer_0;
unsigned * movable buffer_pointer_1 = buffer_1;

sdram_read (c_server, sdram_state, bank, row, col, words, move(buffer_pointer_0));
sdram_write (c_server, sdram_state, bank, row, col, words, move(buffer_pointer_1));

//both buffer_pointer_0 and buffer_pointer_1 are null here

sdram_complete(c_server, sdram_state, buffer_pointer_1); //return to opposite pointer
sdram_complete(c_server, sdram_state, buffer_pointer_0);

}

2.5 Shutdown

The sdram_server may be shutdown, i.e. the thread and all its resources may be freed, with a call to
sdram_shutdown.

Copyright 2016 XMOS Ltd. 5 www.xmos.com
XM006978



SDRAM (3.0.2)

3 Memory allocator API

The purpose of this library is to allow multiple tasks to share a common memory address space. All of the
clients may request a number of bytes from the memory space and will either be allocated a base address
to use the requested amount of memory from or will receive an error. All clients of the memory address
allocator must be on the same tile.

3.1 API

Function sdram_server

Description The actual SDRAM server providing a software interface plus services to access the
SDRAM.

• Automatic SDRAM refresh,
• Multi-client interface,
• Client prioritisation,
• Client command buffering,
• Automatic multi-line SDRAM access.

This provides the software interface to the physical SDRAM. It provides services in-
cluding:

Type void
sdram_server(streaming chanend c_client[client_count],

const static unsigned client_count,
out buffered port:32 dq_ah,
out buffered port:32 cas,
out buffered port:32 ras,
out buffered port:8 we,
out port clk,
clock cb,
const static unsigned cas_latency,
const static unsigned row_words,
const static unsigned col_bits,
const static unsigned col_address_bits,
const static unsigned row_address_bits,
const static unsigned bank_address_bits,
const static unsigned refresh_ms,
const static unsigned refresh_cycles,
const static unsigned clock_divider)

Continued on next page

Copyright 2016 XMOS Ltd. 6 www.xmos.com
XM006978



SDRAM (3.0.2)

Parameters c_client This is an ordered array of the streaming channels to the clients. It is in
client priority order(element 0 being the highest priority).

client_count
The number of clients.

dq_ah The data and address bus port.

cas The CAS signal port.

ras The RAS signal port.

we The WE signal port.

clk The SDRAM clock.

cb Clock block to control the ports.

cas_latency
The CAS latency.

row_words The number of words in a SDRAM row.

col_bits The count of bits for a memory location.

col_address_bits
The number of bits in the coloumn address bus.

row_address_bits
The number of bits in the row address bus.

bank_address_bits
The number of bits in the bank address bus.

refresh_ms
The count of milliseconds for a full refresh cycle.

refresh_cycles
The count of refresh instruction per full refresh cycle.

clock_divider
The divider of the system clock to the SDRAM clock.

Function sdram_init_state

Description This is used to initialise the sdram_state that follows the channel to the SDRAM server.
It must only be called once on the s_sdram_state that it is initialising. A client must
have only one s_sdram_state that exists for the lift time of the use of the SDRAM.

Continued on next page

Copyright 2016 XMOS Ltd. 7 www.xmos.com
XM006978



SDRAM (3.0.2)

Type void
sdram_init_state(streaming chanend c_sdram_server,

s_sdram_state &sdram_state)

Parameters c_sdram_server
Chanel to the SDRAM server.

sdram_state
State structure.

Returns None.

Function sdram_complete

Description This is a blocking call that may be used as a select handler.
It returns an array to a movable pointer. It will complete when a command has been
completed by the server.

Type void
sdram_complete(streaming chanend c_sdram_server,

s_sdram_state &state,
unsigned *movable &buffer)

Function sdram_write

Description Request the SDRAM server to perform a write operation.
This function will place a write command into the SDRAM command buffer if the
command buffer is not full. This is a non-blocking call with a return value to indicate
the successful issuing of the write to the SDRAM server.
1 for SDRAM command queue is full, write command has not been added.

Type int
sdram_write(streaming chanend c_sdram_server,

s_sdram_state &state,
unsigned address,
unsigned word_count,
unsigned *movable buffer)

Continued on next page

Copyright 2016 XMOS Ltd. 8 www.xmos.com
XM006978



SDRAM (3.0.2)

Parameters c_sdram_server
Chanel to the SDRAM server.

state State structure.

address This is a word address of the location in SDRAM to write from.

word_count
The number of words to write to the SDRAM.

buffer A movable pointer from which the data to be written to the SDRAM will
be read. Note, that the ownership of the pointer will pass to the SDRAM
server.

Returns 0 for write command has successfully be added to SDRAM command queue.

Function sdram_read

Description Request the SDRAM server to perform a read operation.
This function will place a read command into the SDRAM command buffer if the com-
mand buffer is not full. This is a non-blocking call with a return value to indicate the
successful issuing of the read to the SDRAM server.
1 for SDRAM command queue is full, read command has not been added.

Type int
sdram_read(streaming chanend c_sdram_server,

s_sdram_state &state,
unsigned address,
unsigned word_count,
unsigned *movable buffer)

Parameters c_sdram_server
Chanel to the SDRAM server.

state State structure.

address This is a word address of the location in SDRAM to read from.

word_count
The number of words to read from the SDRAM.

buffer A movable pointer from which the data to be read from the SDRAM will
be written. Note, that the ownership of the pointer will pass to the
SDRAM server.

Returns 0 for read command has successfully be added to SDRAM command queue.

Copyright 2016 XMOS Ltd. 9 www.xmos.com
XM006978



SDRAM (3.0.2)

Function sdram_shutdown

Description Terminates the sdram_server.

Type void
sdram_shutdown(streaming chanend c_sdram_server)

Returns None.

Type memory_address_allocator_i

Description This interface is used to communication with a memory address allocator.
It provides facilities for requesting an address for a region of memory from within a
shared memory.

Functions
Function request

Description Request an amount of memory from the common memory
space.

Type e_memory_address_allocator_return_code request(unsigned bytes,
unsigned &address)

Parameters bytes The address of the slave device to write to.

address A return value for the base address of the memory
requested.

Returns Whether the allocation succeeded.

Function memory_address_allocator

Description The distributable server for providing memory address to multiple clients.

Type [[distributable]]
void
memory_address_allocator(unsigned client_count,

server interface memory_address_allocator_i rx[client_count],
unsigned base_address,
unsigned memory_size)

Continued on next page

Copyright 2016 XMOS Ltd. 10 www.xmos.com
XM006978



SDRAM (3.0.2)

Parameters client_count
The number of clients.

rx Array of the clients wanting to request memory address space.

base_address
Value to be used as the base of memory address.

memory_size
The size of the memory.

Copyright 2016 XMOS Ltd. 11 www.xmos.com
XM006978



SDRAM (3.0.2)

APPENDIX A - Known Issues

There are no known issues with this library.

Copyright 2016 XMOS Ltd. 12 www.xmos.com
XM006978



SDRAM (3.0.2)

APPENDIX B - SDRAM library change log

B.1 3.0.2

• Update to source code license and copyright

B.2 3.0.1

• Added support for xCORE-200 series.

B.3 3.0.0

• Consolidated version, major rework from previous SDRAM components

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 13 www.xmos.com
XM006978


	SDRAM Library
	Hardware characteristics
	SDRAM API
	Client/Server model
	Command buffering
	Initialization
	Safety through the use of movable pointers
	Shutdown

	Memory allocator API
	API

	Known Issues
	SDRAM library change log
	3.0.2
	3.0.1
	3.0.0


